221. Exponential Analysis applied to the Asymmetric Hydrolysis of Some β-Glucosides with Emulsin.

By Stotherd Mitchell and Ian MacArthur.
The rates of hydrolysis of the d-glucosides of d - and l-methyl- n hexylcarbinol with emulsin have already been examined by Mitchell (J. Biol. Chem., 1929, 82, 727), and it was thought that an extension of the work to the glucosides of other optically active aliphatic alcohols would be of interest. For this purpose it was desirable to avoid as far as possible the tedious and costly process of resolving the alcohols. Since in the previous experiments (loc. cit.) the unimolecular reaction constants did not deviate from the mean by more than $\pm \mathbf{1} 7 \%$, the possibility was considered of applying exponential analysis to the hydrolysis-time curve for the mixture of glucosides obtained from a racemic alcohol. It was decided to test the validity of the method with the previously prepared dl-methyl- n-hexyl-carbinyl- d - β-glucoside.

A small quantity (0.0818 g .) of this glucoside was weighed into a 50 -c.c. graduated flask, which was then placed in a thermostat at 37°. The enzyme solution was prepared by mixing $0 \cdot 100 \mathrm{~g}$. of emulsin with 100 c.c. of water, filtering it, and allowing the filtrate to come to 37° in the thermostat. The hydrolysis experiment was started by filling the graduated flask to the mark with the emulsin solution. 2 C.c. were withdrawn at intervals during about 10 hours, and the volume T_{n} of $0.01 N$-sodium thiosulphate solution equivalent to the amount of glucose set free was determined by the method of Maclean (Bio-
chem. J., 1919, 13, 135). The final reading T_{∞} was obtained some 24 hours later. Table I (A) gives the values of T_{n} and $T_{\infty}-T_{n}$ at the times shown. The differences $T_{\infty}-T_{n}$, which are proportional to the concentrations of unchanged glucoside, were plotted against time, and the method of exponential analysis outlined by Walsh (Proc. Physical Soc., 1919, 32, 26) was applied, it being assumed that two components are present, i.e., that the curve is of the form

$$
\begin{equation*}
y=a_{1} e^{-k_{1} t}+a_{2} e^{-k_{2} t} \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, k_{1}, k_{2}$ are constants, t is time, and y is $T_{\infty}-T_{n}$.
Let $y_{0}, y_{1}, y_{2}, y_{3}$ be the values of y corresponding to the values 0 , $d, 2 d, 3 d$ of t, zero time and d being arbitrarily chosen. Then where,

$$
\begin{equation*}
e^{-k_{1} d} \equiv \alpha_{1}, e^{-k_{1} d} \equiv \alpha_{2} \tag{2}
\end{equation*}
$$

we have

$$
\left.\begin{array}{l}
y_{0}=a_{1}+a_{2} \tag{3}\\
y_{1}=a_{1} \alpha_{1}+a_{2} \alpha_{2} \\
y_{2}=a_{1} \alpha_{1}^{2}+a_{2} \alpha_{2}^{2} \\
y_{3}=a_{1} \alpha_{1}^{3}+a_{2} \alpha_{2}^{3}
\end{array}\right\}
$$

Let p, q be such that α_{1}, α_{2} are the roots of the equation
then

$$
\begin{aligned}
f(x) \equiv & x^{2}+p x+q=0 \\
& y_{2}+p y_{1}+q y_{0}=a_{1} f\left(\alpha_{1}\right)+a_{2} f\left(\alpha_{2}\right)=0 \\
& y_{3}+p y_{2}+q y_{1}=a_{1} \alpha_{1} f\left(\alpha_{1}\right)+a_{2} \alpha_{2} f\left(\alpha_{2}\right)=0
\end{aligned}
$$

and
Elimination of p and q gives

$$
\left|\begin{array}{lll}
x^{2} & x & 1 \\
y_{2} & y_{1} & y_{0} \\
y_{3} & y_{2} & y_{1}
\end{array}\right|=0
$$

The roots of this equation, α_{1}, α_{2}, are thus easily obtained, and the values so found give k_{1} and k_{2} from equations (2) and a_{1} and a_{2} from any two of equations (3).

Probability Correction.-This exponential analysis being based only on four points from the mean curve, and being rather sensitive even to slight error in the chosen points, it is desirable to use the set of 4 parameters so obtained as a first approximation to the set which gives an equation in closest agreement with all the available reliable data. The following method was adopted. Let $\phi\left(a_{1}, a_{2}, k_{1}, k_{2}\right) \equiv$ $a_{1} e^{-k_{1} t}+a_{2} e^{-k_{2} t}$, where (1) is the equation best representing the data of hydrolysis. Further, let $\vec{a}_{1}, \vec{a}_{2}, \bar{k}_{1}, \bar{k}_{2}$ be the parameter set obtained by preliminary exponential analysis, and let

$$
\left.\begin{array}{ll}
a_{1} \equiv \bar{a}_{1}\left(1+\beta_{1}\right) & k_{1} \equiv \bar{k}_{1}\left(1+\lambda_{1}\right) \tag{4}\\
a_{2} \equiv \bar{a}_{2}\left(1+\beta_{2}\right) & k_{2} \equiv \bar{k}_{2}\left(1+\lambda_{2}\right)
\end{array}\right) .
$$

then, where $\beta_{1}, \beta_{2}, \lambda_{1}, \lambda_{2}$ are small,

$$
\begin{aligned}
\delta_{n}= & \phi\left(a_{1}, a_{2}, k_{1}, k_{2}\right)_{t=t_{n}}-\phi\left(\bar{a}_{1}, \bar{a}_{2}, \bar{k}_{1}, k_{2}\right)_{t=t_{n}} \\
= & \left\{\frac{\partial \phi}{\partial \bar{a}_{1}} \cdot \bar{a}_{1} \beta_{1}+\frac{\partial \phi}{\partial \bar{a}_{2}} \cdot \bar{a}_{2} \beta_{2}+\frac{\partial \phi}{\partial \bar{k}_{1}} \cdot \bar{k}_{1} \lambda_{1}+\frac{\partial \phi}{\partial \bar{k}_{2}} \cdot \bar{k}_{2} \lambda_{2}\right\}_{t=t_{n}} \\
& \text { to a first order of approximation } \\
= & \beta_{1}\left(\bar{a}_{1} e^{-\bar{k}_{1} t_{n}}\right)+\beta_{2}\left(\bar{a}_{2} e^{-\bar{k}_{2} t_{n}}\right)+\lambda_{1}\left(-\bar{a}_{1} k_{1} t_{n} e^{-\bar{k}_{1} t_{n}}\right)+\lambda_{2}\left(-\bar{a}_{2} \bar{k}_{2} t_{n} e^{-\bar{k}_{2} t_{n}}\right) \\
\equiv & l_{n 1} \beta_{1}+l_{n 2} \beta_{2}+l_{n 3} \lambda_{1}+l_{n 4} \lambda_{2}
\end{aligned}
$$

For each point $P_{n}\left(t_{n}, y_{n}\right)$ of some 16 readings, an "equation of condition" of type (5) in $\beta_{1}, \beta_{2}, \lambda_{1}, \lambda_{2}$ was thus formed, t_{n} being calculated from P (the first of the 4 selected points for the preliminary exponential analysis) as zero, and δ_{n} being

$$
y_{n}-\left(\bar{a}_{1} e^{-\bar{k}_{1} t_{n}}+\bar{a}_{2} e^{-\bar{k}_{2} t_{n}}\right)
$$

From the 16 equations of condition were formed, as usual in the method of least squares (Whittaker and Robinson, "The Calculus of Observations," 1924, p. 209), the 4 " normal equations"

$$
\begin{align*}
u_{r 1} \cdot \beta_{1}+u_{r 2} \cdot \beta_{2}+u_{r 3} \cdot \lambda_{1}+u_{r 4} \cdot \lambda_{2} & =v_{r} . \tag{6}\\
(r & =1,2,3,4)
\end{align*}
$$

where

$$
u_{r s} \equiv \sum_{n=1}^{16} l_{n r} \cdot l_{n s} \text { and } v_{r} \equiv \sum_{n=1}^{16} l_{n r} \cdot \delta_{n}
$$

Equations (6) were then solved for $\beta_{1}, \beta_{2}, \lambda_{1}, \lambda_{2}$ either as ratios of determinants or by successive approximation, and the results inserted in (4) gave the required best set of parameters $a_{1}, a_{2}, k_{1}, k_{2}$, whence equation (1).

For the approximate exponential analysis of the octylglucoside graph, the following set of 4 points was selected, the time for the first point P being taken as zero. P is chosen some distance from the beginning so as to avoid initial irregularities.

| t (hours) $\ldots \ldots \ldots \ldots \ldots \ldots .$. | 0 | $2 \cdot 5$ | 5 | 7.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 4.795 | 1.845 | 1.078 | 0.640 |

The values obtained were

$$
\begin{array}{ll}
\bar{a}_{1}=3.054 & \bar{k}_{1}=0.208 \\
\vec{a}_{2}=1.741 & \bar{k}_{2}=1.610
\end{array}
$$

After application of the probability correction, the equation for the curve became

$$
y=3.13 e^{-0.213 t}+1.65 e^{-1.84 t}
$$

from which $k_{2} / k_{1}=8 \cdot 6$. Table II (A) shows the extent of agreement between the mean curve for the octylglucoside and the values calculated from the final equation.

From these results, it would appear that the original assumption
that two exponential components are present is"justified. The two β-glucosides, d - and l-methyl- n-hexylcarbinyl-d-glucosides, in the mixture are hydrolysed at different rates, and the ratio of the reaction constants (8.6) obtained by exponential analysis is in good agreement with the value (8.4) previously obtained when the two glucosides were hydrolysed separately.

Experimental.

dl-Methyl-n-butylcarbinyl-d- β-glucoside.-The alcohol was obtained by the reduction of methyl n-butyl ketone (Bentley, J., 1895, 67, 265). Tetra-acetyl- β-methyl-n-butylcarbinyl-d-glucoside was then prepared exactly as described previously for the methyl- n-hexylcarbinyl compound; m. p. 99° (Found : C, $55 \cdot 8 ; \mathrm{H}, 7 \cdot 3 . \quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{10}$ requires $\mathrm{C}, 55 \cdot 6 ; \mathrm{H}, 7 \cdot 4 \%$). Subsequent removal of the acetyl groups gave β-methyl-n-butylcarbinyl-d-glucoside, m. p. 115° (Found: $\mathrm{C}, 54 \cdot 6 ; \mathrm{H}, 9 \cdot 0 . \quad \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, $54 \cdot 6 ; \mathrm{H}, 9 \cdot 1 \%$).

For the hydrolysis experiment, 0.0701 g . of this glucoside was weighed into a 50 -c.c. graduated flask, and a solution of emulsin (0.0504 g . in 100 c.c.) was added. The readings given in Table I (B) were then taken as described for the octylglucoside. For the preliminary exponential analysis, the following 4 points were selected

t (hours)	0	2	4	6
y	$5 \cdot 465$	$2 \cdot 150$	0.895	$0 \cdot 388$

and from these

$$
\begin{array}{ll}
\bar{a}_{1}=3.517 & \bar{k}_{1}=0.384 \\
\bar{a}_{2}=1.948 & \bar{k}_{2}=0.662
\end{array}
$$

After application of the probability correction, the following equation was obtained

$$
y=3 \cdot 49 e^{-0.398 t}+1.97 e^{-0.602 t}
$$

from which $k_{2} / k_{1}=1 \cdot 5$. The agreement between the mean curve and the calculated values is shown in Table II (B).
dl-Methylethylcarbinyl-d- β-glucoside.-In this case the alcohol was obtained by the reduction of methyl ethyl ketone. The tetraacetyl compound was then prepared, m. p. 125° (Found: C, 53.7 ; $\mathrm{H}, 7.0 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{10}$ requires C, $53.5 ; \mathrm{H}, 6.9 \%$). Removal of the acetyl groups gave the glucoside, m. p. 95° (Found: C, $50.6 ; \mathrm{H}$, 8.5 . $\quad \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 50 \cdot 8 ; \mathrm{H}, 8.5 \%$).

For the hydrolysis experiment, 0.1311 g . of this glucoside was weighed into a 50 -c.c. flask, and a solution of emulsin (0.2026 g . in 100 c.c.) was added. The readings are given in Table I (C). For these, 1 c.c. of solution was withdrawn at the times stated. A graph was then constructed, and the following 4 points were selected

t (hours)	0	2	4	
y	$5 \cdot 255$	$2 \cdot 045$	$1 \cdot 175$	$0 \cdot 790$

Preliminary exponential analysis gave the values

$$
\begin{array}{ll}
\bar{a}_{1}=2.152 & k_{1}=0.170 \\
\vec{a}_{2}=3.103 & k_{2}=0.899
\end{array}
$$

and the following equation was obtained after the usual correction :

$$
y=2 \cdot 16 e^{-0 \cdot 166 t}+3 \cdot 08 e^{-0 \cdot 909 t}
$$

Hence $k_{2} / k_{1}=5.5$. The agreement between the mean curve and the calculated values is shown in Table II (C).

The experimental values are plotted in the figure.
3 I

The ratios of the reaction constants are thus $8 \cdot 6,1 \cdot 5$, and $5 \cdot 5$ for the octyl-, hexyl-, and butyl-glucosides respectively, so that under the conditions described the alkyl radical has a very considerable effect. It has been shown previously that with the octylglucosides the d-alkyl component is hydrolysed more quickly than the l-alkyl component. To find whether the same holds for the butylglucosides, a hydrolysis experiment was carried out with glucoside prepared from

Table I.
A.

Octylglucoside.

Time,		
mins.	T_{n}	$T_{\infty}-T_{n}$.
0	$0 \cdot 00$	$6 \cdot 98$
$5 \cdot 0$	$0 \cdot 24$	$6 \cdot 74$
26	$2 \cdot 185$	$4 \cdot 795$
$48 \cdot 5$	$3 \cdot 29$	$3 \cdot 69$
$68 \cdot 5$	$3 \cdot 875$	$3 \cdot 105$
$90 \cdot 5$	$4 \cdot 22$	$2 \cdot 76$
111	$4 \cdot 53$	$2 \cdot 45$
132	$4 \cdot 77$	$2 \cdot 21$
153	$4 \cdot 98$	$2 \cdot 00$
176	$5 \cdot 115$	$1 \cdot 865$
$227 \cdot 5$	$5 \cdot 465$	$1 \cdot 515$
278	$5 \cdot 715$	$1 \cdot 265$
311	$5 \cdot 84$	$1 \cdot 14$
362	$6 \cdot 02$	$0 \cdot 96$
401	$6 \cdot 17$	$0 \cdot 81$
479	$6 \cdot 355$	$0 \cdot 625$
525	$6 \cdot 42$	$0 \cdot 56$
577	6.51	$0 \cdot 47$
∞	$6 \cdot 98$	0.00

Hexylglucoside.

'Time, mins.	T_{n}.	$T_{\infty}-T_{n}$.	Time, mins.	T_{n}.	$T_{\infty}-T_{n}$
0	$0 \cdot 00$	$7 \cdot 08$	0	$0 \cdot 00$	$7 \cdot 015$
$6 \cdot 0$	$0 \cdot 18$	$6 \cdot 90$	$6 \cdot 5$	$0 \cdot 25$	$6 \cdot 765$
$28 \cdot 5$	$1 \cdot 31$	$5 \cdot 77$	27	1.58	$5 \cdot 435$
$49 \cdot 5$	$2 \cdot 15$	$4 \cdot 93$	48	$2 \cdot 675$	$4 \cdot 340$
71	$2 \cdot 895$	$4 \cdot 185$	$69 \cdot 5$	$3 \cdot 41$	$3 \cdot 605$
92	$3 \cdot 545$	$3 \cdot 535$	111.5	$4 \cdot 34$	$2 \cdot 675$
113	$4 \cdot 09$	$2 \cdot 99$	$132 \cdot 5$	$4 \cdot 76$	$2 \cdot 255$
134	$4 \cdot 48$	$2 \cdot 60$	$152 \cdot 5$	$4 \cdot 95$	$2 \cdot 065$
155	$4 \cdot 915$	$2 \cdot 165$	$172 \cdot 5$	$5 \cdot 225$	1.790
$179 \cdot 5$	5-305	$1 \cdot 775$	$194 \cdot 5$	$5 \cdot 38$	1.635
204	5•60	$1 \cdot 48$	215	$5 \cdot 54$	$1 \cdot 475$
226	5•705	$1 \cdot 275$	$236 \cdot 5$	$5 \cdot 635$	$1 \cdot 380$
305	$6 \cdot 34$	$0 \cdot 74$	258	$5 \cdot 79$	$1 \cdot 225$
336	$6 \cdot 525$	$0 \cdot 555$	321	$6 \cdot 04$	0.975
376	$6 \cdot 65$	$0 \cdot 43$	366	$6 \cdot 16$	0.855
419	$6 \cdot 735$	$0 \cdot 345$	409	$6 \cdot 258$	$0 \cdot 757$
$460 \cdot 5$	6.845	$0 \cdot 235$	$440 \cdot 5$	$6 \cdot 337$	$0 \cdot 678$
$565 \cdot 5$	6.975	$0 \cdot 105$	501	$6 \cdot 405$	$0 \cdot 610$
∞	$7 \cdot 08$	$0 \cdot 00$	560	$6 \cdot 485$	$0 \cdot 530$
			584	$6 \cdot 533$	$0 \cdot 482$
			∞	$7 \cdot 015$	$0 \cdot 00$

Table II.

Time from P,hrs.	A. Octylglucoside.			B. Hexylglucoside.			C. Butylglucoside.		
	(curve)	calc.).	Diff.	(curve)	(alc.).	Diff.	$\stackrel{y}{\text { (curve) }}$	calc.)	Diff.
	$5 \cdot 21$	$5 \cdot 18$	$+0.03$	6.90	6.92	-0.02	6.77	6.74	$+0.03$
0	$4 \cdot 79$	$4 \cdot 78$	$+0.01$	$5 \cdot 43$	$5 \cdot 46$	-0.03	$5 \cdot 25$	$5 \cdot 24$	+0.01
0.5	$3 \cdot 43$	$3 \cdot 47$	-0.04	$4 \cdot 33$	$4 \cdot 32$	$+0.01$	3.91	3.94	-0.03
1	$2 \cdot 80$	$2 \cdot 79$	$+0.01$	$3 \cdot 42$	$3 \cdot 42$	0.00	$3 \cdot 07$	3.07	0.00
1.5	$2 \cdot 39$	$2 \cdot 39$	$0 \cdot 00$	$2 \cdot 71$	$2 \cdot 72$	-0.01	$2 \cdot 46$	$2 \cdot 47$	-0.01
2	$2 \cdot 08$	$2 \cdot 08$	$0 \cdot 00$	$2 \cdot 15$	$2 \cdot 16$	-0.01	$2 \cdot 05$	$2 \cdot 05$	$0 \cdot 00$
$2 \cdot 5$	$1 \cdot 85$	$1 \cdot 86$	-0.01	$1 \cdot 70$	$1 \cdot 73$	-0.03	$1 \cdot 74$	$1 \cdot 74$	$0 \cdot 00$
3	$1 \cdot 64$	$1 \cdot 66$	-0.02	$1 \cdot 37$	$1 \cdot 38$	-0.01	1.51	1.51	$0 \cdot 00$
	$1 \cdot 32$	1.33	-0.01	$0 \cdot 89$	$0 \cdot 89$	$0 \cdot 00$	$1 \cdot 17$	1-19	-0.02
5	1.07	1.08	-0.01	0.58	0.58	$0 \cdot 00$	$0 \cdot 95$	$0 \cdot 98$	-0.03
6	$0 \cdot 87$	$0 \cdot 87$	0.00	$0 \cdot 38$	$0 \cdot 37$	$+0.01$	$0 \cdot 79$	$0 \cdot 81$	-0.02
7	$0 \cdot 70$	$0 \cdot 70$	$0 \cdot 00$	$0 \cdot 25$	$0 \cdot 24$	$+0.01$	$0 \cdot 68$	$0 \cdot 68$	0.00
8	0.58	0.57	$+0.01$	$0 \cdot 16$	$0 \cdot 16$	$0 \cdot 00$	0.59	0.58	+0.01
9	$0 \cdot 49$	$0 \cdot 46$	+0.03	$0 \cdot 10$	$0 \cdot 11$	-0.01	0.51	$0 \cdot 49$	$+0.02$

The time values for the first row are $-0.1,-0.5,-0.4$ for A, B, C, respectively, taken from P as zero.
a quantity of alcohol which had been partially resolved. From this it was found that the l-alkyl component was the one more quickly hydrolysed in this case.

In conclusion, we desire to thank the Carnegie Trust for a Research Scholarship, which enabled one of us (I. M.) to take part in this work.

